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S u m m a r y  
The effect of the spatial localization of a network chain by 

surrounding chains is incorporated into the chain probability 
distribution function and the network free energy is then calculated 
using the statistical mechanical formalism for constrained systems. 
In addition to a term having the classical 'Gaussian' form, the 
resulting expression contains another term which depends on both 
the cross-link density of the network and the plateau modulus of 
the uncross-linked melt. 

I n t roduc t ion  
Classical theories of rubber elasticity [see Deam and Edwards 

(1)] assume the network free energy per unit volume is proportional 
to the number of effective network chains per unit volume 7, 

AFnetwor k ~ veAFchai n (i) 

This assumption is consistent with the model of a Gaussian chain 
network system comprised of non-interacting, volumeless 'phantom' 
chains. When a network of real interacting chains is considered, eq. 
1 can only be used if each network chain sees an effective mean- 
field arising from its interaction with surrounding chains. 

We recently presented a mean-field model of rubber elasticity 
(2) in which the elastic free energy of an individual network chain 
was written as the sum of two terms. One term, Fcon, represented 
the connectivity of the chain and was obtained from the Gaussian 
end-to-end vector probability distribution function. The other term, 
Floc, represented the spatial localization of the chain by surrounding 
chains and this contribution was estimated using a scaling anaIysis. 
Here we incorporate the localization effect into the chain probability 
distribution function and calculate the network free energy using 
the Edwards statistical mechanical formalism for systems with 
constraints (3). 



530 

The Free Energy of a Constrained Network Chain 
The entropy of deformation of a network chain is given by 

Edwards (3) as 

ASchai n / k B = I G(I~) ln[G({Xi},R)/G(R)]dR 2) 

where G(R) is the end-to-end vector distribution function of the 
constrained network chain and Xi is the macroscopic deformation 
ratio in the ith direction. 

In the classical theory of rubber elasticity, G(R) is the Gaussian 
end-to-end vector distribution function 

2 2 
G ( l ~ , < g > o ) =  I I  G ( R i , < R > o )  

i---x,y,z 
w h e r e  

2 2 112 
G(Ri, <R %) = (3/2rc <R %) 

2 2 
e x p [ - 3 R i / 2  <R >o} 

3) 

4) 

Ri is the component of the end-to-end vector R along the ith 
macroscopic deformation axis and <R2>o is the unperturbed mean 
square value of R. Using eqs. 3 and 4 in eq. 1 and assuming the 
affine deformation of the vector components, Ri---> Xi Ri, Edwards (3) 
obtained the classical connectivity (or 'Gaussian') contribution to the 
network free energy, as well as a logarithmic term. The log term 
makes no contribution to a constant volume deformation which is 
the case we are considering here. 

A primitive model which emphasizes that a network chain is 
"hemmed in" by surrounding chains and which neglects the network 
structure is based on an analysis of a polymer confined to a central 
harmonic potential. The free energy of a strongly-confined chain is 
rather insensitive to the precise details of the confining potential (8) 
and we can write 

2 2 
G(~ ,<~R>o,  {~oi}) = I"l G ( R i , < ~ R > o , ~ o i )  (5a)  

i=x,y,z 

1/2 
2 ~oi 2) exp(-3Ri  / 2 {oi 2) e x p ( - b  <R 2 G(Ri, <R >o, ~o.~ - ( 3 / 2  rc >o/~ oi 2 ) (5b) 

The length scale ~oi defines the range over which the chain is 
"localized" by a central harmonic potential along the ith macroscopic 
deformation coordinate Ri. G(R) factors into a product of G(Ri) in eq. 
5a as a consequence of the separability of the harmonic potential. 
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The G(Ri) simplify to the asymptotic form in eq. 5b in the limit 
~oi 2 << <R2>o, corresponding to the network chain being strongly 
"hemmed in" by surrounding chains. 

A more sophisticated model than the one above would 
incorporate both chain connectivity and chain localization effects. 
Edwards (3) introduced a mean-field model of a polymer network 
chain subject to a harmonic potential along the chain contour. This 
"random tube" model can be analyzed in stages. 

We first consider a polymer in a straight "tube" defined by a 
harmonic pseudo-potential in the "tube coordinates" {Li} normal to 
the tube axis coordinate Z. The end-to-end distribution function 
G(Z, {Li}, <R2>o, {oi) for a chain strongly confined along the Z axis, 
({oi << <R_2>o), equals 

2 2 2 

G(Z, {Li} , <R >o, ~oi) = GII (Z, <R >o)*G L({Li}, <R >o, ~oi) (6a) 

2 2 1/2 2 2 
G j r (Z ,<~R>o)=(3 /27 t<R>  o) e x p ( - 3 Z / 2 < R > o )  (6b) 

2 
G~({Li},<R->o ~,oi) YI (3/2~{oi2)1/2xp(-3  2 2 , - L i/{ oi)exp(-b <R >o/{ oi 2) 

i=x,y,z ( 6 c ) 

The random tube model can now be constructed by viewing the 
random tube as consisting of various straight tube sections lying 
along the macroscopic deformation axes. Gr for the random tube is 
then approximated as a product of connectivity and confinement 
con t r ibu t ions  

2 2 2 

G r (Ri, Li ,  <R >o, ~o~ = Gcon (Ri, <R >o) Gloc (Li,  <R >o, ~o~ (7a) 

2 
Gco n (Ri,  <R >o) : II 

i=x,y,z 

2 1/2 2 2 
( 3 / 2 7 t < R >  o) e x p ( - 3 R i / 2 < R >  o) (7b) 

2 2 2 
Glo c (Li,  <R >o, ~o~ - 1-I (3/2 ~ ~oi 2) 1/%xp(-3 L i / 2 ~o~exp( -b  <R >o/~ 02) 

i=x,y,z (7c) 

The connectivity contribution Gcon in eq. 7b equals G(R, <R2>o) in 
eq. 3 so that Gr reduces to the classical theory in the absence of 
localization interactions. When the localization effect dominates we 
have Gr = Gloc which has the form of eq. 5. Upon straightening the 
random tube eq. 7 reduces to eq. 6. 
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The free energy of deformation of a network chain can be 
calculated using eq. 7 once the deformation dependences of Ri, Li 
and %i are specified. 

The variation of Ri is taken to be affine Ri --4 )~i Roi, as in the 
classical theory. This seems reasonable since the dimensions of the 
junction separation, Ri, should be large on a v e r a g e  (3). The "tube 
coordinates" Li are not fixed by network cross-linking and are thus 
unaffected by deformation. However, the extent of localization %i as 
measured in the local coordinates Li may change with deformation. 
It might be assumed that the %i vary in an affine manner which 
would yield a reduced stress expression having the infamous 
Mooney-Rivlin form (2). However, the strong confinement of the 
network chain implies that the dimensions of %oi 2 are small 
compared to <R2>o so that the affine assumption is not particularly 
reasonable. A determination of the variation of ~i with deformation 
can be made by recalling that the precise nature of the potential in 
the strong confinement limit is not important and so we can replace 
the harmonic potential by an infinite wall potential. This is 
equivalent to confining the chain in a "tube" of radius %. We have 
argued (2) that the volume of this tube should approximate the 
hard-core volume of the chain. In this case, since the physical 
volume of the chain does not change with deformation, the 
'localization' volume Ri,,~i 2 should also remain unchanged. Since Ri 
transforms affinely, it follows (2) that 
~i ~ )~i -1/2 %0. 

The Network Free Energy 
For a constant volume deformation we combine eqs. 1, 2 and 7 

and we integrate over both the chain coordinates Ri and the tube 
coordinates Li to obtain 

AF({%i})ne twork=(Gv/2)  ][] (t, i2 -1)+Gloc  ][] (%i -1 )  
i=x,y,z i=x,y,z 

w h e r e  

(8a) 

Gv_-- vkBT/2  = pRT/M c (8b) 

Gioc = 7 Gv + GN (8c) 

2 2 2 
GN=V<R>o kBT/~o ~ p kBT 

8d) 

7 is an unspecified constant. In obtaining the expression for GN, we 
have used the relationship G o -  9 -1/2 where p is the density, based 
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on the volume filling argument of Edwards (3) [see also (2)]. This 
argument is consistent with our localization volume analysis. GN can 
be identified with the plateau modulus of the uncross-linked melt 
(2). We note that since ~2o is identified with the hard-core cross- 
sectional area of the polymer chain, it is expected that GN will vary 
inversely with the cross-sectional area of the chain. 

Resul t  
The general functional form of the network free energy of 

deformation in eq. 8 is unchanged from our previous scaling analysis 
(2). However, the contribution of the localization portion of the 
network free energy now depends on the cross-link density of the 
network as well as on the plateau modulus ~ of the uncross-linked 
melt .  
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